## **ASX ANNOUNCEMENT**

6 February 2024



## **EXPLORATION UPDATE - SAND KING**

High grade intercepts improve Sand King's underground potential Successful Phase 1 drilling program nears completion Expanded Phase 2 drilling program of \$2 million to proceed

### Highlights

- Phase 1 Sand King drill program nearing completion with 30 of the 33 holes complete
- Assays for the first 17 holes have returned outstanding intercepts that demonstrate widths and grades conducive to underground mining and have further expanded the mineralisation area including: (see Figures 2, 3 and 4)
  - **2.4m @ 35.8 g/t Sand King 060 Lode** (including 1.5m @ 58.8 g/t)
  - **11.5m @ 6.1 g/t** Sand King 060 Lode
  - 4.3m @ 11.8 g/t Sand King 060 Lode (including 3.9m @ 12.9 g/t)
  - 8.0m @ 6.6 g/t Sand King 060 Lode (including 7.0m @ 7.4 g/t)
  - 9.0m @ 3.1 g/t Sand King 060 Lode (including 6.3m @ 4.1 g/t)
  - 3.5m @ 7.6 g/t Sand King 010 Shear
  - 6.1m @ 4.3 g/t Sand King 060 Lode
  - **3.6m @ 6.6 g/t Sand King 060 Lode** (including 2.7m @ 8.6 g/t)
  - 5.7m @ 3.6 g/t Sand King 060 Lode (including 5.1m @ 3.7 g/t)
  - 2.0m @ 9.2 g/t Sand King 060 Lode
  - 2.6m @ 6.6 g/t Sand King 010 Shear
- The system has been extended to 1km of strike and 300 metres below surface and remains open in all directions
- The geological knowledge, structural framework and overall understanding of Sand King mineralisation has increased substantially, resulting in better definition of lode continuity and grade potential as well as enhanced drill targeting
- Phase 2 drill program of \$2 million will continue uninterrupted over the next two months

Ora Banda Mining Limited (ASX: OBM) ("**Ora Banda**", "**Company**") is pleased to announce additional outstanding intercepts from the current drill program at its Sand King underground prospect located on the Siberia trend; approximately 800 metres north of the Missouri Open Pit.

These results build on Sand King drill results previously announced (refer to ASX announcement "Exploration Update – Sand King" dated 2 November 2023), which include:

- 14.3m @ 8.3 g/t Sand King 060 Lode (including 12.0m @ 9.8 g/t)
- 3.0m @ 7.0 g/t Sand King 060 Lode
- 4.9m @ 3.6 g/t Sand King 060 Lode
- 2.9m @ 9.0 g/t Sand King 090 Lode
- 3.0m @ 17.6 g/t Sand King SL-03 Lode
- 7.0m @ 14.7 g/t Sand King SL-03 Lode
- 10.0m @ 11.5 g/t Sand King SL-03 Lode
- 5.0m @ 11.5 g/t Sand King SL-03 Lode
- 8.0 m @ 19.8 g/t Sand King SL-31 Lode
- 2.0m @ 12.2 g/t Sand King SL-31 Lode

Ora Banda Mining Limited's Managing Director, Luke Creagh, said:

"The success of this program to date cannot be understated given the first 17 holes received from Sand King have intercepted numerous high-grade gold zones of good width, as well as extending known mineralisation in all directions.

"The assays received to date, coupled with the rapid growth in our geological knowledge and advancements in structural modelling essentially means that Sand King is now presenting as highly prospective for our second underground mine.

*"Encouraged by what we are seeing, Ora Banda has moved to accelerate our understanding of Sand King by rolling straight into a Phase 2 drill program which will run for 2 months.* 

"This exploration work at Sand King dovetails into Ora Banda's core business goal for 2024 which is to find and develop a second underground mine to support Riverina. If achieved, the business will be in a step change position whereby the 1.2mtpa Davyhurst process plant will be full of high-grade ore and our production rate will increase substantially."

#### Siberia Complex Overview

The Siberia complex comprises the Missouri, Sand King, Palmerston, Bewick Moering, Theil Well and Black Rabbit deposits with a gold endowment of 750koz<sup>1</sup>, made up of published mineral resources of **4,149,000 tonnes @ 3.4g/t for 458,000 ounces**<sup>2</sup> and historical production of 293,000 ounces at a grade of 2.5g/t<sup>1</sup>, predominantly from open pit sources. Siberia is located 37km southeast of the Davyhurst processing plant and approximately 80km northwest of Kalgoorlie within the Eastern Goldfields of Western Australia.

Siberia has been the focus for the Company's most recent open pit mining endeavours having produced 118,000 ounces<sup>1</sup> since mining recommenced in 2021. The Company is now turning its attention to the underground potential of the Siberia Complex noting that 95% of the 12,700 holes drilled to date are less than 100 metres in depth, meaning the underground exploration search windows are largely unexplored.

#### Sand King Overview

Sand King was previously mined by Western Mining Corporation (WMC) from the late 1980's to 1991 by open pit methods, producing approximately 50,000 ounces at 4.8g/t. A small cutback to the south commenced in August 2023 under OBM and was completed in early January 2024. The Sand King mineralised system is over 1km of strike length, with mineralisation tested to over 300 metres at depth and remains open both along strike and at depth.

#### Geology and Structural Synthesis

#### **Early Shears**

There are early shears in two distinct orientations at Sand King. One shear system strikes towards 010° and the other strikes towards 330°. Both dip to the north-east, thereby forming a conjugate pair. Several definable shear structures have been either mapped in the pit and/ or logged in the diamond core. The shears are ductile, having formed in a tectonic environment. The shears vary from a few cm to +/-1 metre wide and were poorly mineralised or unmineralised at formation.

#### Mineralised vein system

Tension veins consisting of quartz, potassic alteration with sulphides and gold were later emplaced at Sand King. The tension veins formed from hydrostatic pressure rather than tectonic conditions and have either a 060° or 090° strike orientation. The 060° orientation is dominant with strike lengths of up to several hundred metres while the 090° veins are less strike extensive and frequently terminate on the 060° veins.

#### The interaction of late veins with early shears

The behaviour of the tension veins when they intersect the early shears depends on the shear and vein orientations. Observed interactions include:

- 090° veins frequently terminate on 060° veins
- 060° and 090° veins terminate and at times migrate along 330° shears
- All tension veins pass through 010° shears

<sup>&</sup>lt;sup>1</sup> Historical production figures sourced from internal Company Records (updated from Monarch Gold 2008)

<sup>&</sup>lt;sup>2</sup> For further details see ASX Announcement dated 26 October 2023

The 330° shears are strongly foliated and frequently quartz filled which becomes a host for the gold introduced by the later tension veins. When the tension veins intersect the 330° shears the ore bearing fluids migrate up and down the shear, causing grade and volume "blowouts". The 010° shears exhibit a weak planar foliation, without quartz and are generally not a good host for the gold.

Mineral stretching lineations in the 330° shears plunge shallowly to the southwest, implying a steep northerly plunge to the gold mineralisation. Boudinaged quartz in shears are infrequently observed but boudin necks plunge steeply north confirming the overall mineralisation plunge. Furthermore, the intersection of the steep north dipping tension veins with the moderate north dipping 330° shears give a steep north plunge to the high-grade blow-outs.

#### Implications for mining

There are three gold bearing structural orientations at Sand King, 090°, 060° and 330°. The 090° and 060° tension veins are well mineralised with good mining potential. The 330° shears are well mineralised where intersected by the 090° and 060° tension veins. Where several spaced tension veins intersect the 330° shears, the 330° shears will be well mineralised over a reasonable strike length, again with good mining potential.



Figure 1 Plan view of Davyhurst project showing location of Sand King on the Siberia Trend



Figure 2 - Sand King Plan view

*Refer ASX announcements dated 13&22 Sept 2016, 25 Oct 2016, 2&15&23 Nov 2016, 15 Dec 2016, 27 Apr 2020, 2 Nov 2023 and the Company's website* <u>https://orabandamining.com.au/technical-data/</u> *for further information on historical significant intercepts.* 



Figure 3 – Sand King Long Section of main 060 lode trend

Refer ASX announcements dated 13&22 Sept 2016, 25 Oct 2016, 2&15&23 Nov 2016, 15 Dec 2016, 27 Apr 2020, 2 Nov 2023 and the Company's website <a href="https://orabandamining.com.au/technical-data/">https://orabandamining.com.au/technical-data/</a> for further information on historical significant intercepts.



Figure 4 – Sand King oblique cross section demonstrating the new intercept extends high grades and good widths well below historical drilling

*Refer ASX announcements dated 13&22 Sept 2016, 25 Oct 2016, 2815&23 Nov 2016, 15 Dec 2016, 27 Apr 2020, 2 Nov 2023 and the Company's website* <u>https://orabandamining.com.au/technical-data/</u> for further information on historical significant intercepts This announcement was authorised for release to the ASX by Luke Creagh, Managing Director.

For further information about Ora Banda Mining Ltd and its projects please visit the Company's website at <u>www.orabandamining.com.au</u>.

Investor & Media Queries: Luke Creagh Managing Director +61 8 6365 4548 admin@orabandamining.com.au

### **Competent Persons Statement**

The information in this announcement that relates to exploration results is based on, and fairly represents, information and supporting documentation prepared by Mr Andrew Czerw, an employee of Ora Banda Mining Limited, who is a Member of the Australian Institute of Mining and Metallurgy. Mr Czerw has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Czerw consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

[The information in this announcement that relates to prior exploration results was reported in the ASX announcements dated 13 & 22 September 2016, 25 October 2016, 2, 15 & 23 November 2016, 15 December 2016, 27 April 2020, and 2 November 2023. The Company is not aware of any new information or data that materially affects the information included in the relevant announcements.]

The information in this announcement that relates to mineral resources for Siberia was reported in the Company's ASX announcement, Mineral Resource and Ore Reserve Statement, dated 26 October 2023. The Company confirms that it is not aware of any new information or data that materially affects the information included in that announcement and that all material assumptions and technical parameters underpinning the estimates in that announcement continue to apply and have not materially changed.

#### Forward-looking Statements

This announcement contains forward-looking statements which may be identified by words such as "believes", "estimates", "expects', "intends", "may", "will", "would", "could", or "should" and other similar words that involve risks and uncertainties. These statements are based on an assessment of present economic and operating conditions, and on a number of assumptions regarding future events and actions that, as at the date of this announcement, are expected to take place.

Such forward-looking statements are not guarantees of future performance and involve known and unknown risks, uncertainties, assumptions and other important factors, many of which are beyond the control of the Company, the Directors and management of the Company. These and other factors could cause actual results to differ materially from those expressed in any forward-looking statements.

The Company has no intention to update or revise forward-looking statements, or to publish prospective financial information in the future, regardless of whether new information, future events or any other factors affect the information contained in this announcement, except where required by law.

The Company cannot and does not give assurances that the results, performance or achievements expressed or implied in the forward-looking statements contained in this announcement will actually occur and investors are cautioned not to place undue reliance on these forward-looking statements.

## Appendix 1

### Significant Intersections Table – OBM Drill holes

| Project       | Hole ID   | MGA      | MGA    | RL  | Azi  | Dip | End  | Hole        | Depth         | Depth       | Interval | Grade | Gram       | Aug/tinterval  |
|---------------|-----------|----------|--------|-----|------|-----|------|-------------|---------------|-------------|----------|-------|------------|----------------|
|               | SKDD23001 | North    | East   | 410 | 3/13 | -50 | 246  | Туре<br>ООН | From<br>36.80 | To<br>37.58 | 0.78     | 17    | Metres     | 0.8m@1.7g/t    |
|               | SKDD23001 | 6656250  | 20/122 | 410 | 190  | 62  | 1.41 |             | 47.00         | 18.00       | 1.00     | 5.0   | 1.4<br>E 0 | 1.0m @ 5.8 g/t |
| SIDERIA NORTH | SKDD23005 | 00505550 | 504155 | 420 | 100  | -05 | 141  | DDII        | 75.40         | 75 95       | 0.55     | 1.8   | 1.0        | 0.6m @ 1.8 g/t |
|               | SKDD23005 |          |        |     |      |     |      |             | 79.50         | 80.67       | 1 17     | 3.0   | 1.0        | 1.2m @ 3.9 g/t |
|               | SKDD23005 |          |        |     |      |     |      |             | Incl 79 50    | 80.00       | 0.50     | 7.2   | 3.6        | 0.5m @ 7.2 g/t |
|               | SKDD23005 |          |        |     |      |     |      |             | 88 55         | 89.60       | 1.05     | 3.1   | 3.0        | 1 1m @ 3 1 g/t |
|               | SKDD23005 |          |        |     |      |     |      |             | 92.00         | 92 70       | 0.70     | 16.7  | 11.7       | 0.7m@16.7g/t   |
|               | SKDD23005 |          |        |     |      |     |      |             | 104 40        | 105 10      | 0.70     | 1.5   | 11         | 0.7m@15g/t     |
|               | SKDD23005 |          |        |     |      |     |      |             | 108.40        | 112.00      | 3.60     | 4.6   | 16.6       | 3.6m @ 4.6 g/t |
| SIBERIA NORTH | SKDD23006 | 6656335  | 304115 | 425 | 178  | -61 | 195  | нла         | 37.00         | 38.00       | 1.00     | 6.3   | 6.3        | 1 0m @ 6 3 g/t |
| Sidenario     | SKDD23006 | 0050555  | 504115 | 425 | 170  | 01  | 155  | bbn         | 88 30         | 89.30       | 1.00     | 1 1   | 1.1        | 1.0m@1.1g/t    |
|               | SKDD23006 |          |        |     |      |     |      |             | 93.05         | 100.20      | 7.15     | 1.1   | 7.7        | 7.2m @ 1.1 g/t |
|               | SKDD23006 |          |        |     |      |     |      |             | Incl 93 05    | 93 55       | 0.50     | 2.9   | 1.4        | 0.5m@2.9g/t    |
|               | SKDD23006 |          |        |     |      |     |      |             | Incl 95.60    | 96.00       | 0.40     | 3.6   | 1.4        | 0.4m @ 3.6 g/t |
|               | SKDD23006 |          |        |     |      |     |      |             | Incl 97.50    | 98.10       | 0.60     | 2.3   | 1.4        | 0.6m @ 2.3 g/t |
|               | SKDD23006 |          |        |     |      |     |      |             | Incl 99.80    | 100.20      | 0.40     | 2.3   | 0.9        | 0.4m @ 2.3 g/t |
|               | SKDD23006 |          |        |     |      |     |      |             | 102.00        | 103.00      | 1.00     | 1.2   | 1.2        | 1.0m @ 1.2 g/t |
|               | SKDD23006 |          |        |     |      |     |      |             | 143.00        | 145.00      | 2.00     | 1.9   | 3.8        | 2.0m @ 1.9 g/t |
|               | SKDD23006 |          |        |     |      |     |      |             | Incl 144.20   | 145.00      | 0.80     | 3.0   | 2.4        | 0.8m @ 3.0 g/t |
|               | SKDD23006 |          |        |     |      |     |      |             | 162.85        | 165.50      | 2.65     | 5.5   | 14.5       | 2.7m@5.5g/t    |
|               | SKDD23006 |          |        |     |      |     |      |             | 172.00        | 173.00      | 1.00     | 2.5   | 2.5        | 1.0m @ 2.5 g/t |
|               | SKDD23006 |          |        |     |      |     |      |             | 186.89        | 188.00      | 1.11     | 1.7   | 1.9        | 1.1m @ 1.7 g/t |
|               | SKDD23006 |          |        |     |      |     |      |             | Incl 187.31   | 187.65      | 0.34     | 2.8   | 0.9        | 0.3m @ 2.8 g/t |
| SIBERIA NORTH | SKDD23007 | 6656341  | 304095 | 425 | 177  | -63 | 234  | DDH         | 140.60        | 141.00      | 0.40     | 2.1   | 0.8        | 0.4m @ 2.1 g/t |
|               | SKDD23007 |          |        |     |      |     |      |             | 185.31        | 188.46      | 3.15     | 2.8   | 8.7        | 3.2m @ 2.8 g/t |
|               | SKDD23007 |          |        |     |      |     |      |             | 201.27        | 201.63      | 0.36     | 5.1   | 1.8        | 0.4m @ 5.1 g/t |
|               | SKDD23007 |          |        |     |      |     |      |             | 205.00        | 207.60      | 2.60     | 5.2   | 13.5       | 2.6m @ 5.2 g/t |
| SIBERIA NORTH | SKDD23008 | 6656312  | 304077 | 425 | 178  | -51 | 210  | DDH         | 43.00         | 44.00       | 1.00     | 1.2   | 1.2        | 1.0m @ 1.2 g/t |
|               | SKDD23008 |          |        |     |      |     |      |             | 126.40        | 127.00      | 0.60     | 2.0   | 1.2        | 0.6m @ 2.0 g/t |
|               | SKDD23008 |          |        |     |      |     |      |             | 132.65        | 133.00      | 0.35     | 2.3   | 0.8        | 0.4m @ 2.3 g/t |
|               | SKDD23008 |          |        |     |      |     |      |             | 137.70        | 139.83      | 2.13     | 2.7   | 5.8        | 2.1m @ 2.7 g/t |
|               | SKDD23008 |          |        |     |      |     |      |             | Incl 137.70   | 139.47      | 1.77     | 3.1   | 5.4        | 1.8m @ 3.1 g/t |
|               | SKDD23008 |          |        |     |      |     |      |             | 163.00        | 166.05      | 3.05     | 2.9   | 8.7        | 3.1m @ 2.9 g/t |
|               | SKDD23008 |          |        |     |      |     |      |             | Incl 163.00   | 165.65      | 2.65     | 3.1   | 8.1        | 2.7m @ 3.1 g/t |
|               | SKDD23008 |          |        |     |      |     |      |             | 170.50        | 171.00      | 0.50     | 1.2   | 0.6        | 0.5m @ 1.2 g/t |
|               | SKDD23008 |          |        |     |      |     |      |             | 174.00        | 174.50      | 0.50     | 1.7   | 0.8        | 0.5m @ 1.7 g/t |
| SIBERIA NORTH | SKDD23010 | 6656333  | 304056 | 425 | 176  | -61 | 264  | DDH         | 23.00         | 24.00       | 1.00     | 2.6   | 2.6        | 1.0m @ 2.6 g/t |
|               | SKDD23010 |          |        |     |      |     |      |             | 86.00         | 89.00       | 3.00     | 2.6   | 7.9        | 3.0m @ 2.6 g/t |
|               | SKDD23010 |          |        |     |      |     |      |             | Incl 88.00    | 89.00       | 1.00     | 4.9   | 4.9        | 1.0m @ 4.9 g/t |
|               | SKDD23010 |          |        |     |      |     |      |             | 111.00        | 114.00      | 3.00     | 1.1   | 3.3        | 3.0m @ 1.1 g/t |
|               | SKDD23010 |          |        |     |      |     |      |             | Incl 113.00   | 114.00      | 1.00     | 2.0   | 2.0        | 1.0m @ 2.0 g/t |
|               | SKDD23010 |          |        |     |      |     |      |             | 118.00        | 119.00      | 1.00     | 2.3   | 2.3        | 1.0m @ 2.3 g/t |
|               | SKDD23010 |          |        |     |      |     |      |             | 188.70        | 194.40      | 5.70     | 2.1   | 12.1       | 5.7m @ 2.1 g/t |
|               | SKDD23010 |          |        |     |      |     |      |             | Incl 189.20   | 191.00      | 1.80     | 4.5   | 8.1        | 1.8m @ 4.5 g/t |
|               | SKDD23010 |          |        |     |      |     |      |             | Incl 194.00   | 194.40      | 0.40     | 3.4   | 1.3        | 0.4m @ 3.4 g/t |
|               | SKDD23010 |          |        |     |      |     |      |             | 198.00        | 200.00      | 2.00     | 9.2   | 18.4       | 2.0m @ 9.2 g/t |
|               | SKDD23010 |          |        |     |      |     |      |             | 210.00        | 214.85      | 4.85     | 2.0   | 9.7        | 4.9m @ 2.0 g/t |
|               | SKDD23010 |          |        |     |      |     |      |             | Incl 210.00   | 212.00      | 2.00     | 2.4   | 4.8        | 2.0m @ 2.4 g/t |
|               | SKDD23010 |          |        |     |      |     |      |             | Incl 214.35   | 214.85      | 0.50     | 4.7   | 2.3        | 0.5m @ 4.7 g/t |

### 1g/t Cut-off, 0.2m minimum width, maximum 2m internal dilution

| Project       | Hole ID    | MGA     | MGA    | RL  | Azi | Dip | End | Hole | Depth       | Depth  | Interval | Grade | Gram | Aug/tinterval    |
|---------------|------------|---------|--------|-----|-----|-----|-----|------|-------------|--------|----------|-------|------|------------------|
| SIBERIA NORTH | SKDD23011  | 6656300 | 204034 | 424 | 175 | -47 | 203 | DDH  | 92.55       | 97.16  | 4.61     | 1.5   | 7.0  | 4.6m @ 1.5 g/t   |
|               | SKDD23011  |         |        |     |     |     |     |      | Incl 94.07  | 97.16  | 3.09     | 2.1   | 6.4  | 3.1m @ 2.1 g/t   |
|               | SKDD23011  |         |        |     |     |     |     |      | 105 75      | 106 36 | 0.61     | 2.4   | 1.5  | 0.6m @ 2.4 g/t   |
|               | SKDD23011  |         |        |     |     |     |     |      | Incl 106 07 | 106.36 | 0.29     | 3.1   | 0.9  | 0.3m @ 3.1 g/t   |
|               | SKDD23011  |         |        |     |     |     |     |      | 116 60      | 117.00 | 0.40     | 13    | 0.5  | 0.4m @ 1.3 g/t   |
|               | SKDD23011  |         |        |     |     |     |     |      | 122 50      | 123.05 | 0.55     | 1.3   | 0.7  | 0.6m@1.3g/t      |
|               | SKDD23011  |         |        |     |     |     |     |      | 145.27      | 146.28 | 1.01     | 3.5   | 3.5  | 1.0m @ 3.5 g/t   |
|               | SKDD23011  |         |        |     |     |     |     |      | 152.30      | 153.66 | 1.01     | 2.9   | 4.0  | 1.0m @ 3.5 g/t   |
|               | SKDD23011  |         |        |     |     |     |     |      | 172.30      | 175 77 | 2.44     | 2.5   | 4.0  | 2.4m @ 2.7 g/t   |
|               | 3KDD23011  |         |        |     |     |     |     |      | 1/5.55      | 104.20 | 2.44     | 2.7   | 0.5  | 2.4111 @ 2.7 g/t |
|               | SKDD23011  |         |        |     |     |     |     |      | 191.73      | 194.20 | 2.47     | 1.8   | 4.4  | 2.5m@1.8g/t      |
|               | SKDD23011  |         |        |     |     |     |     |      | Incl 191.73 | 192.07 | 0.34     | 4.0   | 1.4  | 0.3m @ 4.0 g/t   |
|               | SKDD23011  | 6656212 | 204025 | 424 | 170 | 52  | 222 | DDU  | 120.0C      | 193.26 | 0.44     | 2.9   | 1.3  | 0.4m @ 2.9 g/t   |
| SIBERIA NORTH | SKDD23012  | 6656313 | 304035 | 424 | 1/8 | -52 | 222 | DDH  | 120.96      | 121.35 | 0.39     | 1.8   | 0.7  | 0.4m @ 1.8 g/t   |
|               | SKDD23012  |         |        |     |     |     |     |      | 137.10      | 137.52 | 0.42     | 14.8  | 6.2  | 0.4m @ 14.8 g/t  |
|               | SKDD23012  |         |        |     |     |     |     |      | 140.00      | 141.00 | 1.00     | 4.8   | 4.8  | 1.0m @ 4.8 g/t   |
|               | SKDD23012  |         |        |     |     |     |     |      | 160.34      | 169.35 | 9.01     | 3.1   | 28.0 | 9.0m@3.1g/t      |
|               | SKDD23012  |         |        |     |     |     |     |      | Incl 163.05 | 169.35 | 6.30     | 4.1   | 26.1 | 6.3m @ 4.1 g/t   |
|               | SKDD23012  |         |        |     |     |     |     |      | 190.30      | 192.85 | 2.55     | 6.6   | 16.8 | 2.6m@6.6g/t      |
|               | SKDD23012  |         |        |     |     |     |     |      | 206.15      | 207.45 | 1.30     | 4.5   | 5.9  | 1.3m @ 4.5 g/t   |
| SIBERIA NORTH | SKDD23013A | 6656291 | 304012 | 422 | 178 | -46 | 231 | DDH  | 79.35       | 80.00  | 0.65     | 2.3   | 1.5  | 0.7m @ 2.3 g/t   |
|               | SKDD23013A |         |        |     |     |     |     |      | 112.30      | 115.09 | 2.79     | 3.2   | 9.0  | 2.8m @ 3.2 g/t   |
|               | SKDD23013A |         |        |     |     |     |     |      | 153.50      | 155.75 | 2.25     | 4.0   | 9.0  | 2.3m @ 4.0 g/t   |
|               | SKDD23013A |         |        |     |     |     |     |      | 170.00      | 176.10 | 6.10     | 4.3   | 26.1 | 6.1m@4.3g/t      |
| SIBERIA NORTH | SKDD23014A | 6656295 | 304015 | 422 | 180 | -59 | 231 | DDH  | 200.50      | 203.00 | 2.50     | 1.9   | 4.6  | 2.5m @ 1.9 g/t   |
|               | SKDD23014A |         |        |     |     |     |     |      | Incl 200.50 | 201.00 | 0.50     | 3.5   | 1.7  | 0.5m @ 3.5 g/t   |
|               | SKDD23014A |         |        |     |     |     |     |      | Incl 202.42 | 203.00 | 0.58     | 4.2   | 2.5  | 0.6m @ 4.2 g/t   |
|               | SKDD23014A |         |        |     |     |     |     |      | 205.95      | 210.25 | 4.30     | 11.8  | 51.0 | 4.3m @ 11.8 g/t  |
|               | SKDD23014A |         |        |     |     |     |     |      | Incl 205.95 | 209.86 | 3.91     | 12.9  | 50.4 | 3.9m @ 12.9 g/t  |
| SIBERIA NORTH | SKDD23015  | 6656275 | 303975 | 421 | 182 | -52 | 222 | DDH  | 13.00       | 14.00  | 1.00     | 2.3   | 2.3  | 1.0m @ 2.3 g/t   |
|               | SKDD23015  |         |        |     |     |     |     |      | 171.47      | 175.05 | 3.58     | 6.6   | 23.7 | 3.6m@6.6g/t      |
|               | SKDD23015  |         |        |     |     |     |     |      | Incl 171.47 | 174.15 | 2.68     | 8.6   | 23.0 | 2.7m @ 8.6 g/t   |
|               | SKDD23015  |         |        |     |     |     |     |      | 178.00      | 186.00 | 8.00     | 6.6   | 52.5 | 8.0m@6.6g/t      |
|               | SKDD23015  |         |        |     |     |     |     |      | Incl 179.00 | 186.00 | 7.00     | 7.4   | 51.9 | 7.0m @ 7.4 g/t   |
| SIBERIA NORTH | SKDD23017  | 6656249 | 303960 | 421 | 0   | 0   | 78  | DDH  | 32.00       | 34.00  | 2.00     | 1.3   | 2.6  | 2.0m @ 1.3 g/t   |
| SIBERIA NORTH | SKDD23017D | 6656244 | 303960 | 421 | 175 | -56 | 224 | DDH  | 36.55       | 37.30  | 0.75     | 1.2   | 0.9  | 0.8m @ 1.2 g/t   |
|               | SKDD23017D |         |        |     |     |     |     |      | 159.72      | 160.15 | 0.43     | 9.7   | 4.2  | 0.4m @ 9.7 g/t   |
|               | SKDD23017D |         |        |     |     |     |     |      | 164.00      | 168.06 | 4.06     | 1.5   | 6.0  | 4.1m @ 1.5 g/t   |
|               | SKDD23017D |         |        |     |     |     |     |      | Incl 164.00 | 164.30 | 0.30     | 4.0   | 1.2  | 0.3m @ 4.0 g/t   |
|               | SKDD23017D |         |        |     |     |     |     |      | Incl 165.24 | 165.54 | 0.30     | 2.1   | 0.6  | 0.3m @ 2.1 g/t   |
|               | SKDD23017D |         |        |     |     |     |     |      | Incl 166.16 | 168.06 | 1.90     | 2.2   | 4.1  | 1.9m @ 2.2 g/t   |
|               | SKDD23017D |         |        |     |     |     |     |      | 170.61      | 170.96 | 0.35     | 7.0   | 2.4  | 0.4m @ 7.0 g/t   |
| SIBERIA NORTH | SKDD23018  | 6656269 | 303955 | 421 | 0   | 0   | 78  | DDH  | 30.00       | 33.00  | 3.00     | 1.7   | 5.0  | 3.0m @ 1.7 g/t   |
|               | SKDD23018  |         |        |     |     |     |     |      | Incl 32.00  | 33.00  | 1.00     | 2.3   | 2.3  | 1.0m @ 2.3 g/t   |
| SIBERIA NORTH | SKDD23019  | 6656245 | 303935 | 420 | 179 | -44 | 186 | DDH  | 150.90      | 162.42 | 11.52    | 6.1   | 70.0 | 11.5m@6.1g/t     |
|               | SKDD23019  |         |        |     |     |     |     |      | 164.45      | 165.03 | 0.58     | 1.6   | 0.9  | 0.6m @ 1.6 g/t   |
| SIBERIA NORTH | SKDD23020  | 6656279 | 303936 | 420 | 0   | 0   | 72  | DDH  | 44.00       | 45.00  | 1.00     | 1.2   | 1.2  | 1.0m @ 1.2 g/t   |
| SIBERIA NORTH | SKDD23021  | 6656229 | 303915 | 419 | 181 | -40 | 200 | DDH  | 140.90      | 143.33 | 2.43     | 2.0   | 5.0  | 2.4m @ 2.0 g/t   |
|               | SKDD23021  |         |        |     |     |     |     |      | Incl 141.66 | 143.33 | 1.67     | 2.3   | 3.9  | 1.7m @ 2.3 g/t   |
|               | SKDD23021  |         |        |     |     |     |     |      | 146.21      | 147.20 | 0.99     | 6.9   | 6.9  | 1.0m @ 6.9 g/t   |
|               | SKDD23021  |         |        |     |     |     |     |      | 150.00      | 155.65 | 5.65     | 3.6   | 20.1 | 5.7m@3.6g/t      |
|               | SKDD23021  |         |        |     |     |     |     |      | Incl 150.52 | 155.65 | 5.13     | 3.7   | 19.2 | 5.1m@3.7g/t      |
|               | SKDD23021  |         |        |     |     |     |     |      | 167.30      | 167.81 | 0.51     | 3.2   | 1.6  | 0.5m @ 3.2 g/t   |
|               | SKDD23021  |         |        |     |     |     |     |      | 189.40      | 189.84 | 0.44     | 1.7   | 0.7  | 0.4m @ 1.7 g/t   |
| SIBERIA NORTH | SKDD23023  | 6656216 | 303876 | 419 | 183 | -50 | 72  | DDH  | 36.00       | 37.00  | 1.00     | 1.4   | 1.4  | 1.0m @ 1.4 g/t   |

| Project       | Hole ID    | MGA              | MGA    | RL  | Azi | Dip | End | Hole | Depth       | Depth  | Interval | Grade | Gram | Aug/tinterval   |
|---------------|------------|------------------|--------|-----|-----|-----|-----|------|-------------|--------|----------|-------|------|-----------------|
| SIBERIA NORTH | SKDD23023A | North<br>6656216 | 203876 | 419 | 175 | -51 | 251 | DDH  | 20.50       | 21.50  | 1.00     | 1.4   | 1.4  | 1.0m @ 1.4 g/t  |
|               | SKDD23023A |                  |        |     |     |     |     |      | 36.60       | 37.00  | 0.40     | 5.1   | 2.0  | 0.4m @ 5.1 g/t  |
|               | SKDD23023A |                  |        |     |     |     |     |      | 166.86      | 168.58 | 1.72     | 7.0   | 12.0 | 1.7m @ 7.0 g/t  |
|               | SKDD23023A |                  |        |     |     |     |     |      | 170.60      | 171.00 | 0.40     | 1.3   | 0.5  | 0.4m @ 1.3 g/t  |
|               | SKDD23023A |                  |        |     |     |     |     |      | 173.28      | 174.20 | 0.92     | 4.9   | 4.5  | 0.9m @ 4.9 g/t  |
|               | SKDD23023A |                  |        |     |     |     |     |      | 191.17      | 193.08 | 1.91     | 4.8   | 9.2  | 1.9m @ 4.8 g/t  |
|               | SKDD23023A |                  |        |     |     |     |     |      | Incl 191.72 | 192.38 | 0.66     | 11.3  | 7.5  | 0.7m @ 11.3 g/t |
|               | SKDD23023A |                  |        |     |     |     |     |      | 210.00      | 212.00 | 2.00     | 3.3   | 6.5  | 2.0m @ 3.3 g/t  |
|               | SKDD23023A |                  |        |     |     |     |     |      | Incl 210.65 | 212.00 | 1.35     | 4.3   | 5.8  | 1.4m @ 4.3 g/t  |
|               | SKDD23023A |                  |        |     |     |     |     |      | 225.78      | 232.33 | 6.55     | 2.0   | 13.3 | 6.6m @ 2.0 g/t  |
|               | SKDD23023A |                  |        |     |     |     |     |      | Incl 225.78 | 227.12 | 1.34     | 4.8   | 6.4  | 1.3m @ 4.8 g/t  |
|               | SKDD23023A |                  |        |     |     |     |     |      | Incl 229.41 | 230.18 | 0.77     | 3.3   | 2.5  | 0.8m @ 3.3 g/t  |
|               | SKDD23023A |                  |        |     |     |     |     |      | Incl 231.75 | 232.33 | 0.58     | 5.1   | 2.9  | 0.6m @ 5.1 g/t  |
|               | SKDD23023A |                  |        |     |     |     |     |      | 235.60      | 237.45 | 1.85     | 3.1   | 5.7  | 1.9m @ 3.1 g/t  |
| SIBERIA NORTH | SKDD23024  | 6656204          | 303855 | 419 | 0   | 0   | 78  | DDH  | 25.00       | 26.00  | 1.00     | 1.1   | 1.1  | 1.0m @ 1.1 g/t  |
|               | SKDD23024  |                  |        |     |     |     |     |      | 53.00       | 54.00  | 1.00     | 2.8   | 2.8  | 1.0m @ 2.8 g/t  |
| SIBERIA NORTH | SKDD23025  | 6656190          | 303837 | 419 | 184 | -49 | 60  | DDH  | 15.00       | 16.00  | 1.00     | 3.1   | 3.1  | 1.0m @ 3.1 g/t  |
|               | SKDD23025  |                  |        |     |     |     |     |      | 20.00       | 24.00  | 4.00     | 1.5   | 6.1  | 4.0m @ 1.5 g/t  |
|               | SKDD23025  |                  |        |     |     |     |     |      | Incl 22.00  | 23.00  | 1.00     | 2.1   | 2.1  | 1.0m @ 2.1 g/t  |
|               | SKDD23025  |                  |        |     |     |     |     |      | 30.00       | 48.00  | 18.00    | 1.6   | 28.7 | 18.0m @ 1.6 g/t |
|               |            |                  |        |     |     |     |     |      |             |        |          |       |      |                 |
|               | SKDD23025  |                  |        |     |     |     |     |      | Incl 32.00  | 37.00  | 5.00     | 2.3   | 11.7 | 5.0m @ 2.3 g/t  |
|               | SKDD23025  |                  |        |     |     |     |     |      | Incl 40.00  | 41.00  | 1.00     | 2.1   | 2.1  | 1.0m @ 2.1 g/t  |
|               | SKDD23025  |                  |        |     |     |     |     |      | Incl 42.00  | 43.00  | 1.00     | 2.4   | 2.4  | 1.0m @ 2.4 g/t  |
|               | SKDD23025  |                  |        |     |     |     |     |      | Incl 47.00  | 48.00  | 1.00     | 3.2   | 3.2  | 1.0m @ 3.2 g/t  |
|               | SKDD23025  |                  |        |     |     |     |     |      | 51.00       | 60.00  | 9.00     | 1.8   | 16.6 | 9.0m @ 1.8 g/t  |
|               | SKDD23025  |                  |        |     |     |     |     |      | Incl 51.00  | 56.00  | 5.00     | 2.1   | 10.7 | 5.0m @ 2.1 g/t  |
|               | SKDD23025  |                  |        |     |     |     |     |      | Incl 58.00  | 60.00  | 2.00     | 2.2   | 4.5  | 2.0m @ 2.2 g/t  |
| SIBERIA NORTH | SKDD23026B | 6656190          | 303831 | 419 | 205 | -50 | 102 | DDH  | 4.00        | 18.00  | 14.00    | 1.5   | 20.8 | 14.0m @ 1.5 g/t |
|               | CKDD2202CD |                  |        |     |     |     |     |      | June 1 4 00 | 5.00   | 1.00     | 2.4   | 2.4  | 10-024-4        |
|               | SKDD23026B |                  |        |     |     |     |     |      |             | 5.00   | 1.00     | 2.4   | 2.4  | 1.0m @ 2.4 g/t  |
|               | SKDD23026B |                  |        |     |     |     |     |      | Inci 14.00  | 17.00  | 3.00     | 3.0   | 10.8 | 3.0m @ 3.6 g/t  |
| SIBERIA NORTH | SKDD23028  | 6655989          | 303593 | 412 | 180 | -51 | 291 | DDH  | 131.94      | 133.24 | 1.30     | 5.7   | 7.4  | 1.3m @ 5.7 g/t  |
|               | SKDD23028  |                  |        |     |     |     |     |      | Incl 131.94 | 132.84 | 0.90     | 7.6   | 6.8  | 0.9m @ 7.6 g/t  |
|               | SKDD23028  |                  |        |     |     |     |     |      | 160.20      | 162.35 | 2.15     | 6.7   | 14.3 | 2.2m@6.7g/t     |
|               | SKDD23028  |                  |        |     |     |     |     |      | Incl 160.50 | 162.35 | 1.85     | 7.6   | 14.0 | 1.9m @ 7.6 g/t  |
|               | SKDD23028  |                  |        |     |     |     |     |      | 255.00      | 257.35 | 2.35     | 2.4   | 5.5  | 2.4m @ 2.4 g/t  |
|               | SKDD23028  |                  |        |     |     |     |     |      | Incl 256.30 | 257.35 | 1.05     | 3.8   | 4.0  | 1.1m @ 3.8 g/t  |
|               | SKDD23028  |                  |        |     |     |     |     |      | 270.30      | 274.00 | 3.70     | 3.8   | 14.2 | 3.7m @ 3.8 g/t  |
|               | SKDD23028  |                  |        |     |     |     |     |      | 276.50      | 278.65 | 2.15     | 3.8   | 8.2  | 2.2m @ 3.8 g/t  |
|               | SKDD23028  |                  |        |     |     |     |     |      | Incl 276.50 | 277.80 | 1.30     | 5.2   | 6.8  | 1.3m @ 5.2 g/t  |
| SIBERIA NORTH | SKDD23032  | 6656227          | 303895 | 419 | 0   | 0   | 78  | DDH  | 36.00       | 37.00  | 1.00     | 1.4   | 1.4  | 1.0m @ 1.4 g/t  |
|               | SKDD23032  |                  |        |     |     |     |     |      | 57.00       | 58.00  | 1.00     | 1.9   | 1.9  | 1.0m @ 1.9 g/t  |
| SIBERIA NORTH | SKDD23033A | 6656232          | 303855 | 419 | 181 | -63 | 60  | DDH  | 49.00       | 50.00  | 1.00     | 1.0   | 1.0  | 1.0m @ 1.0 g/t  |
| SIBERIA NORTH | SKDD23036  | 6655992          | 303593 | 412 | 180 | -55 | 102 | DDH  | 34.00       | 36.00  | 2.00     | 1.7   | 3.3  | 2.0m @ 1.7 g/t  |
|               | SKDD23036  |                  |        |     |     |     |     |      | 55.00       | 56.00  | 1.00     | 2.7   | 2.7  | 1.0m @ 2.7 g/t  |
| SIBERIA NORTH | SKDD23040  | 6656134          | 303699 | 416 | 161 | -57 | 354 | DDH  | 237.80      | 238.15 | 0.35     | 1.3   | 0.4  | 0.4m @ 1.3 g/t  |
|               | SKDD23040  |                  |        |     |     |     |     |      | 239.00      | 240.00 | 1.00     | 1.0   | 1.0  | 1.0m @ 1.0 g/t  |
|               | SKDD23040  |                  |        |     |     |     |     |      | 257.45      | 258.00 | 0.55     | 1.6   | 0.9  | 0.6m @ 1.6 g/t  |
|               | SKDD23040  |                  |        |     |     |     |     |      | 278.00      | 279.00 | 1.00     | 1.1   | 1.1  | 1.0m @ 1.1 g/t  |
|               | SKDD23040  |                  |        |     |     |     |     |      | 293.00      | 298.70 | 5.70     | 1.1   | 6.4  | 5.7m @ 1.1 g/t  |
|               | SKDD23040  |                  |        |     |     |     |     |      | 300.70      | 301.20 | 0.50     | 1.0   | 0.5  | 0.5m @ 1.0 g/t  |
|               | SKDD23040  |                  |        |     |     |     |     |      | 342.00      | 345.45 | 3.45     | 7.6   | 26.3 | 3.5m @ 7.6 g/t  |

| Project       | Hole ID   | MGA     | MGA<br>Fast | RL  | Azi | Dip | End | Hole | Depth<br>From | Depth  | Interval | Grade | Gram<br>Metres | Au g/t interval |
|---------------|-----------|---------|-------------|-----|-----|-----|-----|------|---------------|--------|----------|-------|----------------|-----------------|
| SIBERIA NORTH | SKDD23049 | 6656130 | 303704      | 416 | 156 | -49 | 300 | DDH  | 176.15        | 178.55 | 2.40     | 35.8  | 86.0           | 2.4m @ 35.8 g/t |
|               | SKDD23049 |         |             |     |     |     |     |      | Incl 176.15   | 177.60 | 1.45     | 58.8  | 85.3           | 1.5m @ 58.8 g/t |
|               | SKDD23049 |         |             |     |     |     |     |      | 186.42        | 188.20 | 1.78     | 5.9   | 10.4           | 1.8m @ 5.9 g/t  |
|               | SKDD23049 |         |             |     |     |     |     |      | Incl 186.42   | 187.50 | 1.08     | 8.9   | 9.6            | 1.1m @ 8.9 g/t  |
|               | SKDD23049 |         |             |     |     |     |     |      | 217.18        | 220.79 | 3.61     | 1.5   | 5.6            | 3.6m @ 1.5 g/t  |
|               | SKDD23049 |         |             |     |     |     |     |      | Incl 219.58   | 220.79 | 1.21     | 3.6   | 4.4            | 1.2m @ 3.6 g/t  |
|               | SKDD23049 |         |             |     |     |     |     |      | 248.00        | 248.46 | 0.46     | 1.5   | 0.7            | 0.5m @ 1.5 g/t  |
|               | SKDD23049 |         |             |     |     |     |     |      | 272.26        | 272.83 | 0.57     | 1.0   | 0.6            | 0.6m @ 1.0 g/t  |
|               | SKDD23049 |         |             |     |     |     |     |      | 276.49        | 277.04 | 0.55     | 1.1   | 0.6            | 0.6m @ 1.1 g/t  |
|               | SKDD23049 |         |             |     |     |     |     |      | 278.92        | 279.50 | 0.58     | 1.1   | 0.6            | 0.6m @ 1.1 g/t  |
|               | SKDD23049 |         |             |     |     |     |     |      | 282.20        | 282.65 | 0.45     | 1.5   | 0.7            | 0.5m @ 1.5 g/t  |
| SIBERIA NORTH | SKGT002   | 6656225 | 304199      | 426 | 262 | -45 | 164 | DDH  | 98.90         | 99.30  | 0.40     | 4.6   | 1.8            | 0.4m @ 4.6 g/t  |
|               | SKGT002   |         |             |     |     |     |     |      | 104.40        | 106.60 | 2.20     | 2.6   | 5.7            | 2.2m @ 2.6 g/t  |
|               | SKGT002   |         |             |     |     |     |     |      | Incl 105.00   | 106.00 | 1.00     | 4.1   | 4.1            | 1.0m @ 4.1 g/t  |

### Appendix 2 - JORC CODE, 2012 EDITION – TABLE 1 REPORT TEMPLATE

# Section 1 Sampling Techniques and Data – Missouri & Sand King

Information for historical (Pre Ora Banda Mining Limited from 1980's to 2010) drilling and sampling has been extensively viewed and validated where possible. Information pertaining to historical QAQC procedures and data is incomplete but of a sufficient quality and detail to allow drilling and assay data to be used for resource estimations. Further Ora Banda Mining Limited has undertaken extensive infill and confirmation drilling which confirm historical drill results. Sections 1 and 2 describe the work undertaken by Ora Banda Mining Limited and only refer to historical information where appropriate and/or available.

| Criteria               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>Goldfields Group; Auger holes were drilled to a maximum depth of 1.5m. RC samples were routinely collected at 1m intervals. Diamond drill core samples were taken at geological boundaries and sawn in half. Samples pulverised at laboratory.</li> <li>Monarch Gold Mining Company Ltd; RAB samples were collected at 2m and 4m composites via a scoop method at 1m intervals. RC samples were collected at 1m, 2m to 5m intervals. 1m samples were riffle split.</li> <li>WMC; In early drilling by WMC, samples were "panned' for visible gold. Percussion samples were collected at 1m intervals, split in the field. Diamond core samples were cut in half or quartered.</li> <li>Gilt Edged Mining NL; All RAB and RC holes were collected through a cyclone and sampled at 1m intervals, pipe or spear sampled, composited over 5m intervals. The composite samples weighing about 3kg were despatched for analysis. 5m composites with assays greater than 0.2 g/t Au were resampled by riffle-splitting the whole of each 1m sample down to about 3kg prior to being despatched for analysis.</li> <li>Siberia Mining Corporation Ltd; RAB samples were collected at 1m intervals from the drill hole collar using a plastic bucket and laid on the ground. A scoop sample was taken from each sample to form a 5m composite. RC samples were collected at 1m intervals and passed through a cyclone and split using a two tiered, 75:25 riffle splitter. The split sample (approximately 2-3kg) was stored in a drawn calico bag, which was then placed next to the split sample reject (approximately 10-15kg), which was contained in UV resistant PVC bags. A representative scoop sample was then taken from each split sample reject bags to form a 4m composite sample. Diamond half core sampled at 1m intervals.</li> <li>Ora Banda Mining; RC samples were routinely collected at 1m intervals and cone split. Half sawn core samples crushed, pulverised and 40g or 50g sample taken for fire assay at intertek. RC grade control samples are collected at 1m intervals i</li></ul> |
| Drilling<br>techniques | <ul> <li>Drill type (eg core, reverse circulation, open-hole<br/>hammer, rotary air blast, auger, Bangka, sonic, etc)<br/>and details (eg core diameter, triple or standard<br/>tube, depth of diamond tails, face-sampling bit or<br/>other type, whether core is oriented and if so, by what<br/>method, etc).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>Goldfields Group; Auger holes were using an auger rig on the back of a Toyota Landcruiser from Snap Drilling. RC holes were drilled by Western Diamond Drillers using a Schramm Rig. Diamond holes were drilled by Mundy Drilling services using a KL1200 rig. Diamond holes were oriented.</li> <li>Monarch Gold Mining Company Ltd; RC holes were drilled by Kennedy Drilling using a 4 inch blade.</li> <li>WMC; RC percussion holes were drilled using a Schram Rig. RC holes were drilled using blades and hammer. The RC drilling diameter is unknown. Diamond drill holes for NQ core were drilled and reduced to BQ core at depth if necessary. Some diamond holes commenced with a percussion pre-collar. Diamond core generally not oriented.</li> <li>Gilt Edged Mining NL; RC holes were drilled by ether Sing Drilling or MCKay Drilling. Both Kalgoorlie companies used a booster and auxiliary compressor. The RC drilling diameter is unknown.</li> <li>Siberia Mining Corporation Ltd; RAB holes were drilled by ProDrill Pty Ltd of Kalgoorlie using an open hole RAB drill rig. All holes were</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Criteria                                                | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drill sample<br>recovery                                | <ul> <li>Method of recording and assessing core and chip<br/>sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery and<br/>ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample<br/>recovery and grade and whether sample bias may<br/>have occurred due to preferential loss/gain of<br/>fine/coarse material.</li> <li>Whether core and chip samples have been<br/>geologically and geotechnically logged to a level of<br/>detail to support appropriate Mineral Resource<br/>estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in<br/>nature. Core (or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant<br/>intersections logged.</li> </ul> | <ul> <li>drilled dry. RC holes were drilled by Premium Drilling Pty Ltd of Kalgoorlie using a 350/750 Schram RC drill rig and a 5.25' face sampling hammer. An auxiliary booster was used on holes deeper than 75m.</li> <li>EGL; RC drilling using 5.25 inch face sampling hammer. PQ, HQ and NQ diamond core. PQ drilled from surface until fresh rock encountered, then changed to NQ for geotechnical holes. Resource holes drilled HQ from surface to fresh rock, then changed to NO.</li> <li>Ora Banda Mining Limited – 5.5 – 5.625 inch diameter RC holes using face sampling hammer with samples collected under cone splitter. Core holes have RC pre-collars up to 150m depth, then NQ2 coring to BOH. All core or einted by reflex instrument. RC grade control rig is 5.5 inch diameter NC holes using face sampling hammer with samples collected under cone splitter. Core holes have RC pre-collars up to 150m depth, then NQ2 coring to BOH. All core or einted by reflex instrument. RC grade control rig is 5.5 inch diameter NC holes using face sampling hammer with samples collected under cone splitter. Core holes have RC pre-collars up to 150m depth, then NQ2 coring to BOH. All core or einted by reflex instrument. RC grade control rig is 0.5 Sinch diameter NC have auger. RAB and RC drill recoveries were not recoded by Goldfields Group, Monarch Gold Mining Company Ltd, WNC, Gilt Edged Mining NL, Suberia Mining Groporation, Maitland Mining NL, Newcrest Mining tal, Julia Mines NL, Placer Dome Asia Pacific Ltd, Goongarrie Gold Pty Ltd, Australian Consolidated Equities Ltd. Centaur Mining and Exploration Ltd, EGL, Britannia Gold NL, Glengarry Resources NL.</li> <li>EGL - Diamond drill recoveries are recorded as a percentage calculated from measured core against downhole drilled intervals (core blocks). RC sample recoveries are recorded as a percentage calculated from measured core against downhole drilled intervals (core blocks). RC sample recoveries are recorded as a percentage calculated from measured core against downhole drilled intervals (co</li></ul> |
| Sub-sampling<br>techniques<br>and sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all subsampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain</li> </ul>                                                                                                                                                                  | <ul> <li>Clifter index are logged in detail.</li> <li>Goldfields Group; RC samples were routinely collected at 1m intervals and riffle split. Diamond drill core samples were taken at geological boundaries and sawn in half. RC and diamond samples were dried, crushed, split, pulverised and a 50 gm charge taken. All sampling of resource drilling incorporated a system of standards and blanks to keep strict control on assay reliability.</li> <li>Monarch Gold Mining Company Ltd; RAB samples were collected at 1m intervals and 2m and 4m composites taken via a scoop method. RC samples were collected at 1m, 2m and 5m intervals. 1m samples were riffle split. Samples were prepared with a single stage mix and grind from which an assay charge was taken Composite samples with assays greater than 0.2 g/t Au were split at 1m intervals and re-analysed. Field duplicate samples were taken and analysed every 20 samples. Blanks and standards were routinely submitted with assay batches to evaluate sample preparation and assay accuracy.</li> <li>WMC; In early drilling by WMC, samples were "panned" for visible gold. Percussion samples were collected at 1m intervals, split in the field. Diamond core samples were using a nylon mesh. Oversize samples crushed in fan forced ovens at 80°C for paper packets and 140°C for samples in calico bags, sieved using a nylon mesh. Oversize samples crushed in Jacques jaw crusher to produce -6mm sample, split employing either a rotary or riffle splitter and pulverised using Tema Swing mills prior to analysis, except for soil and stream sediment samples finer than 80 mesh. A 25grm charge was taken for assaying.</li> <li>Gilt Edged Mining NL; All RAB and RC holes were collected through a cyclone and sampled at 1m intervals, pipe or spear sampled, composited over 5m intervals. The composite samples weighing about 3kg were despatched for analysis. 5m composites with assays</li> </ul>                                                                                                                                          |

| Criteria                                               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                        | size of the material being sampled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>greater than 0.2 g/t Au were resampled by riffle-splitting the whole of each 1m sample down to about 3kg prior to being despatched for analysis. Samples were despatched to MinLab in Kalgoorlie where they were dried, pulverised to a nominal 90% minus 200 mesh (75 microns) and a 25 gm aliquot taken to be analysed for gold. Comprehensive QA/QC and check sampling reports were produced. Umpire assay checks were completed using a second laboratory (Genalysis).</li> <li>Siberia Mining Corporation Ltd; RAB samples were collected at 1m intervals from the drill hole using a plastic bucket and laid on the ground. A scoop sample was taken from each sample to form a 5m composite. RC samples were collected at 1m intervals and passed through a cyclone and split using a two teared, 75:25 riffle splitter. The split sample (approximately 2-3kg) was stored in a drawn calico bag, which was then placed next to the split sample reject (approximately 10-15kg), which was contained in UV resistant PVC bags. A representative scoop sample was then taken from each split sample reject bags to form a 4m composite sample. Diamond half core was sampled at 1m intervals. Samples were dried, crushed, split, pulverised until 80% passed minus 75 microns and a 50 gm charge taken. Field duplicates were submitted. Composites with assays greater than 0.2 g/t Au were re-assayed using individual 1m re-split samples.</li> <li>EGL &amp; Swan Gold; RC samples were routinely collected at 1m intervals from a cone splitter and submitted for analysis. Samples were crushed, pulverised and a 50gm charge taken for analysis. Field duplicates, blanks and standards were submitted for QAQC analysis. Diamond core in sampled at 1m intervals or to zones of geological interest. Core samples are sawn in half. Minimum sample length in NQ core or 0.3m.</li> <li>Ora Banda Mining Limited – RC samples were dried, crushed, split, pulverised and a 50gm charge taken, field duplicates, blanks and standards were submitted to 4m by PVC spear. Half-core samples, cut by automated</li></ul> |
| Quality of<br>assay data<br>and<br>laboratory<br>tests | <ul> <li>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</li> <li>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</li> <li>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</li> </ul> | <ul> <li>Goldfields Group; Auger samples were set to Analabs (Welshpool) to be assayed for gold to dpp by graphite furnace P605 and arsenic to 1ppm by aqua regia hydride H605. RC samples were submitted to Australian Laboratory Services (ALS) in Kalgoorlie for gold and arsenic analysis. Fire assay methods were used for gold analysis with 50gm charge, detection limit of 0.01ppm Au, while Aqua Regia methods, with detection limits of 5ppm As, were used for arsenic analysis. Diamond drill core samples were despatched to Genalysis in Kalgoorlie and analysed for gold using 50gm fire assay to 0.01ppm. A system of standards and blanks were incorporated in all sample despatches to keep a strict control on assay reliability. QA/QC re-assaying of mineralised RC intersections and interpreted structures was undertaken later in the reporting period.</li> <li>Monarch Gold Mining Company Ltd; Samples submitted to ALS for 50g Fire Assay with AAS finish. Samples were also analysed at Ultratrace for gold, palladium and platinum. Submitted field duplicates, blanks and standards for QAC analysis.</li> <li>WMC; All samples were sent to WMC Exploration Division Kalgoorlie Laboratory to be analysed for gold using wet method, aqua regia leach, reading by AK; a 25gm sample was digested with aqua regia, the gold extracted using aliquot DIBK and the solvent backwashed. The gold concentration was determined by Atomic Absorption.</li> <li>Gilt Edged Mining NL; All samples were submitted to SGS Analabs in Kalgoorlie to be assayed for gold using 50gm Fire Assay with detection limit of 0.01ppm. Auger analysed to gold using 50gm Fire Assay with detection limit of 0.01ppm. Certified reference material standards were employed. Duplicate samples, analytical standards, and check analyses at a second laboratory were used to monitor analytical quality.</li> <li>Siberia Mining Corporation Ltd; All samples were submitted to SGS Analabs in Kalgoorlie to be assayed for gold using 50gm Fire Assay with detection limit at 0.01ppm Au and f</li></ul>                         |

| Criteria                                             | JORC Code explanation                                                                                                                                                                                                                                                                                                                                       | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                      |                                                                                                                                                                                                                                                                                                                                                             | nulverised sample passing a 75 m mesh) are undertaken en approximately 1 in //0 samples. Duplicate samples are taken in DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                      |                                                                                                                                                                                                                                                                                                                                                             | drillholes at a rate of approximately 1:30. The accuracy (standards) and precision (repeats) of assaying are acceptable. Grade control samples are analysed at SGS, Kalgoorlie using 50g fire assay (FA_MPAES). Blanks and standards are submitted every 10 to 15 samples with Grade Control samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <i>Verification<br/>of sampling<br/>and assaying</i> | <ul> <li>The verification of significant intersections by either<br/>independent or alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry<br/>procedures, data verification, data storage (physical<br/>and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul> | <ul> <li>Selected drill intersections from WMC, Goldfields and Siberia Mining Corporation diamond core have been inspected by EGL/OBM geologists. Some WMC holes have been re-logged by EGL geologists and mineralisation identified at the reported intervals.</li> <li>Drill intersections from WMC and Goldfields diamond core were inspected by Siberia Mining Corporation geologists in 2005 and mineralization was visible in core at the expected intervals. Mineralisation widths and styles are very comparable with NQ2 drilling by SMC in 2004.</li> <li>Holes are not deliberately twinned.</li> <li>WMC; Hand written geology logs and assays were digitally captured.</li> <li>EGL; Data has been verified by reviewing original drill and assay logs. Print outs of computerized sample intervals and assays generated by WMC were used to verify the intercepts reported. Geological and sample data logged directly into field computer at the core yard. Data is transferred to Perth via email and imported into GBIS SQL database by the database administrator (DBA). Assay files are received in .csv format and loaded directly into the database by the DBA. Hardcopy and/or digital copies of data are kept for reference if necessary.</li> <li>Monarch Gold Mining Company Ltd; Geological and sample data was logged digitally and .csv or .xls files imported into Datashed SQL database with in-built validation.</li> <li>Ora Banda Mining Limited - Geological and sample data logged directly into field computer, copied onto the company servers and imported into Gebank SQL database by the database administrator (DBA). Assay files are received in .csv format and loaded directly and/or digital copies of data are kept for reference if necessary.</li> <li>Ora Banda Mining Limited - Geological and sample data logged directly into field computer, copied onto the company servers and imported into Gebank SQL database by the database administrator (DBA). Assay files are received in .csv format and loaded directly into the database by</li></ul>      |
|                                                      |                                                                                                                                                                                                                                                                                                                                                             | No adjustments have been made to assay data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Location of<br>data points                           | <ul> <li>Accuracy and quality of surveys used to locate drill<br/>holes (collar and down-hole surveys), trenches, mine<br/>workings and other locations used in Mineral<br/>Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul>                                           | <ul> <li>Goldfields Group; Collar co-ordinates for RC and DD holes, including elevation were surveyed with DGPS. RAB holes were located with GPS. Downhole surveys were taken every 10m for RC and DD holes, method unknown. RAB holes not downhole surveyd. The gird system used is AGD 1984 AMG Zone 51.</li> <li>Monarch Gold Mining Company Ltd; Drill hole collars were surveyed by Spectrum Surveys of Kalgoorlie using RTK GPS. Downhole surveys were undertaken by electronic multiple shot (EMS) or Eastman single shot. The gird system used is GDA1994 MGA Zone 51.</li> <li>WMC; Drill hole collars were surveyed by Electronic Distance Meter (EDM) theodolite by the Kalgoorlie Gold Operations' mine surveyor. Holes also surveyed using theodolite by McGay Surveys as well as by WMC mine surveyors. WMC RC holes were generally not downhole surveyed. Diamond holes down hole surveyed by Eastman single shot camera or multishot approximately every 30m. The gird system used is AGD 1984 AMG Zone 51.</li> <li>Gilt Edged Mining NL; Contract surveyors were engaged for siting of drill holes prior to drilling, pick-up of accurate drill hole co-ordinates after drilling and down-hole plunge and azimuth readings. All holes drilled after 1998 were picked up by Fugro Survey Pt Ltd of Kalgoorlie using differential GPS. The gird system used is AGD 1984 AMG Zone 51.</li> <li>Siberia Mining Corporation Ltd; Collar co-ordinates for northings, eastings and elevation were recorded by Fugro Spatial Solutions Pty Ltd. The gird system used is AGD 1984 AMG Zone 51.</li> <li>Siberia Mining Corporation Ltd; Collar co-ordinates for northings, eastings and elevation were recorded by Fugro Spatial Solutions Pty Ltd. The gird system used is AGD 1984 AMG Zone 51.</li> <li>Siberia Mining Corporation Ltd; Collar co-ordinates for northings, eastings and elevation were recorded by Fugro Spatial Solutions Pty Ltd. The gird system used is AGD 1984 AMG Zone 51. Diamond holes were down hole surveyed by gyro. RC holes generally not downhole surve</li></ul> |

| Criteria                                                            | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                      | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data spacing<br>and<br>distribution                                 | <ul> <li>Data spacing for reporting of Exploration Results.</li> <li>Whether the data spacing and distribution is<br/>sufficient to establish the degree of geological and<br/>grade continuity appropriate for the Mineral<br/>Resource and Ore Reserve estimation procedure(s)<br/>and classifications applied.</li> <li>Whether sample compositing has been applied.</li> </ul>                                         | <ul> <li>Drilling is predominantly on a 20mE X 20mN grid. Grade control drilling was carried out on a nominal 5m X 5m grid</li> <li>At Sand King the data spacing and distribution is sufficient to establish geological and grade continuity to support the definition of Mineral Resource and classifications as defined under the JORC 2012 code.</li> <li>Samples are not composited for reporting.</li> <li>Samples are composited for resource calculations.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Orientation of<br>data in<br>relation to<br>geological<br>structure | <ul> <li>Whether the orientation of sampling achieves<br/>unbiased sampling of possible structures and the<br/>extent to which this is known, considering the deposit<br/>type.</li> <li>If the relationship between the drilling orientation<br/>and the orientation of key mineralised structures is<br/>considered to have introduced a sampling bias, this<br/>should be assessed and reported if material.</li> </ul> | <ul> <li>At Sand King drilling is predominantly inclined to the south, optimal for the predominantly ENE (0600)</li> <li>striking, north dipping mineralisation.</li> <li>It is not known whether there is any introduced sample bias due to drill orientation.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sample<br>security                                                  | • The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>Unknown for earlier operators.</li> <li>EGL – Samples are bagged, tied and in a secure yard on site. Once submitted to the laboratories they are stored in cages within a secure fenced compound. Samples are tracked through the laboratory via their LIMS.</li> <li>Monarch - Pre-numbered sample bags were put into numbered plastic bags. These numbers were written on the submission forms which were checked by the geologist. Plastic bags were then securely cable tied and placed in a secure location. Samples were then picked up by the Lab in Kalgoorlie or deliver to Perth via courier. A work order conformation was emailed to Monarch personnel for each sample submission once samples were collected on the day of drilling and bagged into cable tied polyweave bags. Polyweave bags are stored into bulka bags on pallets in a secure yard on-site. Once submitted to the laboratories they are stored in cages within a secure fenced compound. Samples are tracked through the laboratory.</li> </ul> |
| Audits or<br>reviews                                                | • The results of any audits or reviews of sampling techniques and data.                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Digital data from the SQL database has been reviewed by EGL and is consistent with hard copy and digital WAMEX data.</li> <li>Siberia Mining Corporation conducted a due diligence on the data and core in 2005 and were "comfortable with the quality and integrity of the data". Digital data has been reviewed and is consistent with hard copy data.</li> <li>Monarch Gold Mining Company Ltd; Monthly QAQC reports were produced to monitor accuracy and precision.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

# Section 2 Reporting of Exploration Results – Missouri & Sand King

(Criteria listed in the preceding Missouri & Sand King section also apply to this section.)

| Criteria                                | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                   |  |  |  |  |  |  |  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Mineral<br>tenement and<br>land tenure  | <ul> <li>Type, reference name/number, location and<br/>ownership including agreements or material<br/>issues with third parties such as joint ventures,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Sand King deposit is on Tenement M24/960 held by Siberia Mining Corporation Pty. Ltd., a wholly owned subsidiary of Ora Banda Mining.<br/>The tenement is in good standing.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                   |  |  |  |  |  |  |  |
| status                                  | partnerships, overriding royalties, native title<br>interests, historical sites, wilderness or national                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TENEMENT HOLDER AGREEMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                   |  |  |  |  |  |  |  |
|                                         | <ul> <li>park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 124/0960 SIBERIA MINING<br>CORPORATION<br>PTY LTD ROB MITCHELL AND HANK SHRERS (SURFACE ALLUVIAL RIG<br>the tenement only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JICKEL MINERALS (portion of<br>iHTS TO 2M DEPTH) (portion of                                                      |  |  |  |  |  |  |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | re are no known heritage issues<br>re are no known impediments to operating in the area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                   |  |  |  |  |  |  |  |
| Exploration<br>done by other<br>parties | • Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ling on the tenements was completed by numerous operators, but the majority of work was<br>ria Mining Corporation, Monarch Gold and EGS/OBM. All work by these companies was to in                                                                                                                                                                                                                                                                                                                                                                                                                              | ; completed by WMC, Gilt Edged Mining,<br>dustry standards of the time.                                           |  |  |  |  |  |  |  |
| Geology                                 | • Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>Sand King is an orogenic lode style deposit hosted by mafic rocks, predominantly basalt.</li> <li>Gold mineralisation at Sand King takes the form of stacked quartz-biotite-feldspar-sulphide shear lodes within the basalt. Widths vary from sub 1m to ~ 6m true width. Occasionally blow outs occur with &gt;6m true width. Mineralised structures are NE-SW striking in the south and normally steeply dipping (~80 degrees) to the north-west while in the north-eastern end of the deposit most mineralisation is interpreted to strike E-W and dip steeply to the north (~80 degrees)</li> </ul> |                                                                                                                   |  |  |  |  |  |  |  |
| Drill hole<br>Information               | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:         <ul> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> </ul> </li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul> | e Significant Intercepts in document<br>e significant intercept table provides details of drill holes with intercepts of >= 1 gram met<br>ode position with grades below this value, NSI (no significant intercept) is listed. This provic<br>oject area with significant gold intercepts versus the number of holes with lesser or no sign<br>dths reported in the Significant Intercepts table are all down hole lengths.                                                                                                                                                                                     | res, In cases where drilling has intercepted<br>les context to the number of holes in the<br>ifficant intercepts. |  |  |  |  |  |  |  |
| Data<br>aggregation<br>methods          | <ul> <li>In reporting Exploration Results, weighting<br/>averaging techniques, maximum and/or minimum<br/>grade truncations (eg cutting of high grades) and<br/>cut-off grades are usually Material and should be</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ginal assays are length weighted. Grades are not top cut. Lower cut off grade is nominally 1.<br>nimum width of 0.2m.<br>metal equivalents reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0g/t. Maximum 2m internal dilution and                                                                            |  |  |  |  |  |  |  |

| Criteria                                                                        | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                 | <ul> <li>stated.</li> <li>Where aggregate intercepts incorporate short<br/>lengths of high grade results and longer lengths of<br/>low grade results, the procedure used for such<br/>aggregation should be stated and some typical<br/>examples of such aggregations should be shown in<br/>detail.</li> <li>The assumptions used for any reporting of metal<br/>equivalent values should be clearly stated.</li> </ul>              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept<br>lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</li> </ul>                     | <ul> <li>Drilling is predominantly angled at -60° to the south, optimally intersecting the steep north dipping mineralisation. This drill orientation does not intersect all lodes at optimal angles and as such some drill intercepts are longer than true widths.</li> <li>All intercept widths reported are down hole lengths. The geometry of mineralisation is known for the Sand King deposit. However, no attempt has been made to report true widths.</li> <li>Some drill programs required shallow angle (~30°) diamond drilling to hit specific targets within the constraints of existing mining infrastructure (existing pit and dumps)</li> </ul> |
| Diagrams                                                                        | <ul> <li>Appropriate maps and sections (with scales) and<br/>tabulations of intercepts should be included for<br/>any significant discovery being reported These<br/>should include, but not be limited to a plan view of<br/>drill hole collar locations and appropriate sectional<br/>views.</li> </ul>                                                                                                                             | See plans and sections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Balanced<br>reporting                                                           | <ul> <li>Where comprehensive reporting of all Exploration<br/>Results is not practicable, representative reporting<br/>of both low and high grades and/or widths should<br/>be practiced to avoid misleading reporting of<br/>Exploration Results.</li> </ul>                                                                                                                                                                         | <ul> <li>All drill intercepts from recent drilling are reported.</li> <li>Results reported include both low and high gram metre (g/t x down hole length) values.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Other<br>substantive<br>exploration<br>data                                     | <ul> <li>Other exploration data, if meaningful and material,<br/>should be reported including (but not limited to):<br/>geological observations; geophysical survey<br/>results; geochemical survey results; bulk samples<br/>– size and method of treatment; metallurgical test<br/>results; bulk density, groundwater, geotechnical<br/>and rock characteristics; potential deleterious or<br/>contaminating substances.</li> </ul> | <ul> <li>Metallurgical and geotechnical work has been completed for Sand King deposit in the past.</li> <li>Additional metallurgical, geotechnical, environmental and engineering work has been or is in the process of being completed for Sand King deposit.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                      |
| Further work                                                                    | <ul> <li>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul>                                                                   | <ul> <li>Statutory approvals for OP mining Sand King are in place.</li> <li>Additional drilling to grow the UG resource.</li> <li>UG mining studies.</li> <li>Statutory approvals for UG mining required.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                           |